

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 9652–9662

Synthesis of 4-dialkylaminopyridine derivatives through ring-rearrangement of 3-nitro-2H-pyran-2-one acetamidines

Vittorio Bertacche, Alessandro Contini, Emanuela Erba, Donatella Nava and Pasqualina Trimarco*

Istituto di Chimica Organica 'A. Marchesini', Facoltà di Farmacia e Centro Interuniversitario di Ricerca sulle Reazioni Pericicliche e Sintesi di Sistemi Etero e Carbociclici, Universita degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy -

> Received 4 May 2007; revised 28 June 2007; accepted 12 July 2007 Available online 15 July 2007

Abstract—A new synthesis of substituted 4-dialkylaminopyridines was developed, starting from 3-nitropyran-2-one N-functionalized amidines. Secondary amines were reacted with the amidines in a sealed tube and in ethanol as the solvent yielding exclusively 4-dialkylaminopyridine derivatives or a mixture with 4-methylpyridine derivative, depending on the C-a-linked substituents of the starting amidine. Structural elucidation of the 4-dialkylaminopyridines revealed their existence as two tautomeric forms, depending on the solvent. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The pyridine ring, an integral part of several natural products of therapeutic importance, plays a key role in catalyzing both biological and chemical reactions. On the other hand, from a chemical perspective, many dialkylaminopyridines such as 4-dimethylaminopyridine (DMAP), 4-pyrrolidinopyridine (PPY), and their analogs have been extensively used as catalysts in acylation and alkylation reactions as well as catalysts for the esterification of unreactive alcohols and enantioselective acyl transfer.[1](#page-9-0) A survey of the literature revealed that these molecules can usually be prepared by nucleophilic aromatic substitution of preformed 4-halopyridine derivatives or of their homologues with the appropriate amino compounds.[2](#page-9-0) Other synthetic routes to 4-amino pyridines involve approaches based on either (i) the cyclization of the addition product derived from electrophilic attack of nitriles on to dianions of β -(monoalkylamino)- α , β -unsaturated ketones, 3 or (ii) the hydrolysis of the bicyclic iminium salt intermediates resulting from the reaction between 1,3-dialkoxy-2-azapropenylium salts and N-methyl-4-piperidone enamines. 4 On the other hand, the synthetic scheme herein reported is based on the use of substituted 2H-pyran-2-one acetamidines as a route to 4-dialkylaminopyridines.

Continuing our studies directed toward the synthesis of heterocyclic compounds, we have recently developed an unusual synthetic path to achieve 2-pyridinacetamides from amidines bearing pyran-2-one nucleus at N-1.[5](#page-9-0) In this context, we obtained acetamidines bearing a 3-nitro-2H-pyran-2-one group on N-1, afterward used as starting materials for the synthesis of 4-dialkylaminopyridine derivatives.

It is well known that several kinds of nucleophiles can react with the pyran-2-one nucleus at C-2 and C-6 causing an initial ring opening, followed by a recyclization into a new heterocyclic ring.^{[6](#page-9-0)} As well, an electron-withdrawing substituent $(NO₂)$ at the C-3 position of the pyran-2-one ring enhances the reactivity toward the nucleophiles at the C-6 site.^{[7](#page-9-0)} Additionally, the imino group of amidines reacts with nucleophilic reagents such as the carbanions resulting from 2-pyran-2-one ring opening.[8](#page-9-0)

Thus, we proposed to take advantage of the enhanced electrophilic character of the C-6 atom in the pyran-2-one ring and of the nucleophilic features of the amidine imino group.

Herein, we present a new method for the synthesis of 4-dialkylaminopyridine derivatives starting from 3-nitro-2H-pyran-2-one acetamidines, which were transformed using secondary amines as a nucleophilic source.

2. Results and discussion

The acetamidines substituted at N-1 with an electron-withdrawing group are usually achieved in a chilled solution $(-30 \degree C)$ by reaction of an isolated azide and enamine.^{[9](#page-9-0)}

Keywords: 3-Nitro-2H-pyran-2-one amidines; 4-Dialkylamino-a-nitromethylpyridines; Tautomerism; Thermal rearrangement.

^{*} Corresponding author. Tel.: +39 02 50314475; fax: +39 02 50314476; e-mail: pasqualina.trimarco@unimi.it

^{0040–4020/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2007.07.022

In our case, the 4-chloro-3-nitro-2H-pyran-2-one 1 was reacted with sodium azide in a DMF solution at -40° C. In about 4 h, the chloro derivative 1 disappeared and most likely turned into the 4-azido-3-nitro-2H-pyran-2-one A. The known azide transformation through a nitrene intermediate into the 6-methyl-4H-pyrano $[3,4-c][1,2,5]$ oxadiazol-4-one 3-oxide 3 was avoided by the low temperature adopted.^{[10](#page-9-0)}

Indeed, the furoxane^{[10](#page-9-0)} derivative 3 was the only obtained by performing the same reaction at -10 °C. The typical mass fragmentation^{[11](#page-9-0)} validated its structure and supported the azide A as the intermediate.

Maintaining the inner temperature at -50 °C the appropriate enamines 2a–ewere then added. These conditions allowed the isolation of the amidines 4a–e (Scheme 1) in a short reaction time and with yields varying from 25 to 72% (see Section 4).

The unsuccessful isolation of the 4,5-dihydro-triazole B is not surprising, owing to its thermal instability as a result of the electron-withdrawing effect of the N-1 substituent, 12 which facilitates the cleavage of the N1–N2 bond and promotes the amidine rearrangement.

Spectroscopic data collected for the new amidines 4a–e were consistent with the proposed structures and were concordant with the available literature data for similar substitution pat-terns in pyran-2-one derivatives.^{[13](#page-9-0)}

With the goal of synthesizing substituted 4-dialkylaminopyridines, we decided to screen the amidine behavior when the amidinic C- α -linked substituents R^1 were varied. Thus, we performed a preliminary experiment by refluxing compounds 4a and 4c in diethylamine as the solvent. In about 30 min, the starting materials turned into the pyridine derivatives 5a and 6a, respectively (Scheme 2), and the ¹H NMR spectra of the crude reaction mixtures did not reveal any signal referable to side products.

The structure of the pyridine 5a was supported by the spectroscopic data.

 $NHY₂ =$ diethylamine

Scheme 2. Synthesis of pyridines 5a and 6a.

Besides the signals expected for the phenyl and morpholino substituents, the ¹H NMR spectrum of $5a$ (CDCl₃) showed two singlets at δ 6.94 and δ 5.51, confirmed by the ¹³C signals at δ 119.5 and δ 81.1 that are consistent with the pyr-idine CH-meta and the NO₂-linked CH₂, respectively.^{[14](#page-9-0)} A positive nuclear Overhauser effect supported the assigned structure by demonstrating the spatial proximity of these hydrogens.

The interpretation of the ¹H NMR spectrum of pyridine compound $6a$ (CDCl₃) was more difficult due its complex signal pattern.

It is known that pyridine derivatives similar to 5a and 6a can exist in tautomeric^{[15](#page-9-0)} or zwitterionic^{[16](#page-9-0)} forms α , β (*E* or *Z*), γ , as depicted in [Scheme 3.](#page-2-0)

Tautomeric equilibrium between aromatic and 1,2-dihydro structures has been widely studied in 2-methylene pyridines and in quinolines bearing an electron-withdrawing group on the pyridinic C- α -linked CH₂. The literature reports that the tautomeric ratio is dependent on solvent, temperature, and

Scheme 3. Tautomeric and zwitterionic forms in compounds 5a and 6a. Spectroscopic data of the pyridine derivatives 5a,b and 6a–l are discussed according to the carbon atom labeling showed in this Scheme.

substituents.^{[15](#page-9-0)} In our case, the acidic protons of the $NO₂$ linked CH_2 in the pyridine derivatives $5a$ and $6a$ might allow both tautomeric equilibria^{[17](#page-9-0)} and zwitterionic^{[16](#page-9-0)} forms.

The spectroscopic data (FTIR and ¹H NMR) recorded in different solvents (see Section 4) and collected for the 4 methylpyridine derivative 5a ruled out both the tautomeric and dipolar forms showing in all cases the presence of the sole aromatic α structure.

In contrast, spectroscopic data collected for 6a indicated the existence of different tautomeric forms depending on the selected solvents.

The ¹H NMR spectrum of 4-diethylaminopyridine **6a** (C_6D_6 at 500 MHz) displayed two doublets at δ 6.29 and δ 6.22, related to the H-3 and H-5 in accordance with a pyridine CH*meta* having an amino group at the *ortho* position,^{[4](#page-9-0)} and one intense singlet at δ 5.16, which is related to the nitromethylene group. The 13 C NMR spectrum supported the above observations with the signals at δ 103.5 (CH-3), 104.1 (CH-5) and 81.1 ($CH₂NO₂$).^{[14d](#page-9-0)}

2D NMR experiments such as HSQC, HMBC, and NOESY performed in C_6D_6 further validated the 6a α structure.

On the other hand, the ¹H NMR spectrum registered in CDCl₃ suggested the 6a β structures. Indeed, pyridine derivative 6a (CDCl₃ at 500 MHz) displayed two signals at δ 5.78 and δ 6.09 with the typical $J_{meta} = 2.4 \text{ Hz}^{16}$ $J_{meta} = 2.4 \text{ Hz}^{16}$ $J_{meta} = 2.4 \text{ Hz}^{16}$ A singlet at δ 6.89 and another broad one-proton signal at δ 14.73, related to the NH, as confirmed by deuterium exchange with $D₂O$, were also observed.

Protons and carbons in ${}^{1}H$ and ${}^{13}C$ spectra were assigned according to two-dimensional experiments. HSQC experiment allowed the attribution of the CH-5 (δ 6.09, δ 100.7), the CH-3 (δ 5.78, δ 93.8) and the nitromethylene proton $(C=CH-NO₂, \delta 6.89, \delta 104.5)$ signals,^{16,18a,b} quaternary carbon being assigned from the results of an HMBC experiment.

Although the $C=CH-NO₂$ double bond of 6a can in principle show two geometrical isomers $(E \text{ or } Z)$, only one isomer was detected by the 1 H NMR spectrum.

The high frequency shift referred to the NH proton $(\delta 14.73)$ shows that the NH is cis-oriented to the nitro group, and indicates that compound $6a$ is the β tautomer in the shape of (Z) isomer. Indeed, such a steric arrangement allows an intramolecular hydrogen bond between the N–H and $-NO₂$ groups, [17–19](#page-9-0) thus explaining the high frequency observed.

In order to further confirm the observed structure of the pyridine derivative 6a, a NOESY experiment was carried out in CDCl₃ solution at 298 K.

This experiment displayed spatial proximity between the H-3 (δ 5.78) and both the vinylic-H (δ 6.89) and the C-4linked diethylammino CH₂ (δ 3.43). The nuclear Overhauser effect was also observed between the H-5 proton (δ 6.09) and the signal at δ 3.43, as well as between the H-5 proton and the triplet at δ 2.66, related to the propyl CH₂. A weak interaction between the NH proton and the propyl $\rm CH_2$ was also detected, and an exchange cross-peak between the NH signal at δ 14.73 and the vinylic-H signal at δ 6.89 was observed, thus proving that the tautomeric equilibrium takes place under the adopted analytical conditions.

ROESY experiments performed at 213 K confirmed the structure assigned for compound 6a.

Further structural elucidations were obtained by both the solid state and solution IR analyses, which ruled out the tautomeric β or zwitterionic γ forms of the compound 6a depicted in Scheme 3. FTIR spectra of 6a, both on the isolated crystal and in chloroform solution, were characterized by two absorption bands at 1621 (C=N) and 1582 (C=C) cm^{-1} and at 1622 (C=N) and 1596 (C=C) cm⁻¹, respectively, thus validating the aromatic pattern of the pyridine ring.

Analytical data led us to conclude that, unlike 5a, the pyridine derivative 6a can exist as the 6a α tautomer in the solid state and in non-polar solvent (i.e., benzene), while the 1,2-dihydro 6a β (Z) tautomer predominates in diluted CHCl₃ solution. Thus, the observed tautomeric equilibrium surely depends on the solvent,^{15d} but an electronic effect of the substituents could also be hypothesized. Indeed, the 4-diethylamino substituent in 6a is involved in a strong resonance interaction with the ring nitrogen atom, increasing its basicity.[20](#page-9-0) A proton transfer between the acidic $-CH₂NO₂$ hydrogen and the basic pyridine nitrogen can then be favored. Moreover, the resulting 6a β (Z) tautomer, showing an exocyclic double bond, can be stabilized by the intramolecular six-term hydrogen bond between the N–H and the $-NO₂$ oxygen. In this context, the synergistic effect of the solvent is of importance: the chloroform proton, interacting with the $NO₂$ oxygen electron pair favors the equilibrium shift by stabilizing the previously mentioned intramolecular hydrogen bond. Thorough theoretical calculations are being performed in order to provide a better description of such an interesting tautomeric equilibrium.

The obtaining of the pyridine derivatives 5a and 6a can be rationalized by the reaction paths depicted in Scheme 4. Owing to the strong electron-withdrawing group at C-3 position, the expected nucleophilic attack occurred on the C-6 of the pyran-2-one ring,⁷ followed by ring opening and decarboxylation to give enamine E. Starting from the enamine intermediate E, two different competing pathways were operating.

Scheme 4. Suggested mechanism for the formation of 5 and 6.

According to path a, the 4-dialkylaminopyridine 6a arose from enamine E (or from its corresponding zwitterion F) by way of subsequent nucleophilic addition to the amidine group and amine elimination providing the pyridine ring favored by aromatization.

According to path b, the 4-methylpyridine derivative 5a was achieved from the ring closure of enamine E through the carbanion G, easily formed due to the electron-withdrawing effect of the phenyl group on the amidinic C - α .^{[5](#page-9-0)} Such results clearly show that the product ratio is strongly dependent on the substituent $R¹$ linked to the amidinic group. Under these reaction conditions, the large amount of amine and the peculiarity of the $R¹$ substituent could explain the two different transformations from the enamine intermediate E and the achievement of the 4-methylpyridine derivative 5a.

To provide some insight into the mechanism of this rearrangement and to find an effective synthetic method to achieve 4-dialkylaminopyridines 6 from both the alkyl and phenyl substituted amidines 4a–e we adopted new reaction conditions by employing ethanol as a solvent and avoiding the amine excess. Thus, to an ethanol solution of the C - α alkyl substituted amidines 4c–e was added an equimolar amount of secondary amines by operating in a sealed tube put in an oil bath preheated at 70° C [\(Table 1](#page-4-0), method B).

Moreover, C- α phenyl substituted amidines $4a$, b were reacted with an equimolar amount of secondary amines by adding a catalytic amount of p-toluenesulfonic acid [\(Table](#page-4-0) [1,](#page-4-0) method D) to the ethanol solution. It is well known that solvents can exert a considerable influence on both the posi-tion of chemical equilibria and reaction rates.^{[21](#page-9-0)} The ketone enamines exist predominantly as the least substituted double bond isomer, and the polar solvents, 22 22 22 for instance ethanol, affect the charge separation thus lowering the transition state energy. For the above reasons, it was expected that the polar solvent might enhance the achievement of the pyridine derivatives 6a,e–l through their zwitterionic forms F, and that the acidic medium might afford the 4-dialkylamino derivatives $6b-d$ also from the C- α phenyl substituted amidines 4a,b by promoting the amine loss.

Reacted amines, methods, reaction times, and ratios of pyridine derivatives 6a–j and 5a,b, when obtained, are listed in [Table 1](#page-4-0).

The ratios between the 4-alkyl pyridine derivatives 5a,b and 4-dialkylaminopyridine derivatives 6b–d in the reaction mixture were determined by ¹H NMR spectroscopic analysis in C_6D_6 . In fact the different hydrogen shift related to the CH₂NO₂ signal (at about δ 4.90 and δ 4.98 for 5a,b and 6b–d, respectively) allowed a clear distinction between the two obtained pyridines. Similarly, the ratios of the 4-dialkylaminopyridine derivatives 6a–l were measured by ¹H NMR analysis of the crude mixtures in C_6D_6 . The integral intensities of the three signals owing to the CH₂NO₂ (range δ 4.98–5.03), H-3 close to the CH₂NO₂ moiety (range δ 6.07–6.23), and H-5 (range δ 5.90–6.20) enabled to estimate the ratio of the obtained pyridines.

The reaction of morpholino substituted amidines 4c–e in the ethanol solution containing an equimolar amount of amine afforded the expected pyridine derivatives 6e–g,i,j,l bearing on C-4 either morpholine or piperidine in good yields. Performing the reaction with an equimolar amount of diethylamine, the amidines 4c–e provided the 4-diethylaminopyridines 6a, 6h, and 6k, respectively, as a minor product. The amine competition could explain the unsatisfactory yield of Table 1. Synthesis of 4-methylpyridines 5 and 4-dialkylaminopyridines 6 from amidines 4: effect of experimental conditions on 5 and 6 ratio

^a Amine as solvent at reflux: see Section 4.
^b Amine 1 equiv/EtOH: see Section 4.
c Amine 5 equiv/*p*-TSA cat pH \cong 6.5/EtOH: see Section 4.

 $^{\circ}$ Ratio of 5 and 6 estimated by ¹H NMR spectroscopy.

the 4-diethylamino derivatives 6a, 6h, and 6k. Instead, the 4-diethylaminopyridines 6h and 6k were satisfactorily obtained by the reaction (Table 1, method C) of the amidines 4d and 4e, respectively, with 5 equiv of diethylamine. These experimental results confirm that the difficult formation of the C- α alkyl carbanion enables the alkyl amidines 4c–e to react according to path a, also when a large amount of amine is used.

Significant yield improvements for the 4-dialkylaminopyridine derivatives **6b–d** were reached by reacting the \mathbb{R}^1 phenyl substituted amidine 4a under an acidic medium (Table 1, method D). The morpholino substituted amidine 4a, when reacted with diethylamine, supplied an unsatisfactory amount of 4-diethylaminopyridine 6c. The poor yield of the 6c derivative was improved by mixing the corresponding amidine 4b with diethylamine.

The results listed in Table 1 show that the behavior of amidines 4 depends on the C - α amidinic carbon substitution. The new selected reaction conditions enabled the synthesis of pyridine derivatives 6 from also C-a phenyl substituted amidines 4a,b, thus supporting the formulated mechanistic hypothesis in which the pyridine derivatives 5 and 6 arise from the enamine intermediate E, and confirming that the polar solvent and the acidic medium can favor the path a.

The 1 H and 13 C NMR spectra of the purified compounds 5b and 6b–l validated the proposed structure and were in accordance with similar substitution patterns observed for pyridines 5a and 6a, respectively.

The ¹H NMR spectra of the 4-dialkylaminopyridine derivatives 6b–l recorded in benzene solution showed only the aromatic form α , as previously noticed for pyridine 6a.

On the other hand, the proton spectra of compounds 6b–l, recorded in chloroform solution, indicated that the pyridines 6b–l exist as a tautomeric mixture of the α and β (Z) form, with a ratio that is likely influenced by the nature of the pyridine substituents.

To further confirm our methodological choices regarding the C - α phenyl substituted amidines $4a,b$, we reacted amidine 4a with an equimolar amount of morpholine under the different reaction conditions presented in [Table 2.](#page-5-0)

^a Estimated by ¹H NMR spectroscopy in C_6D_6 .

The reported ratios of 5a and 6b in the crude mixture were estimated by ¹H NMR spectroscopic analysis in C_6D_6 .

The data in Table 2 highlight an effective yield improvement of pyridine 6b when amidine 4a is reacted in ethanol and p-TSA catalysis, thus confirming that the polar and protic solvent acts on the enamine intermediate E thus favoring path a, as well as that the acidic medium promotes the intramolecular condensation providing the pyridine derivatives 6b–d.

3. Conclusions

Substituted 2H-pyran-2-one acetamidines proved to be useful building blocks in organic synthesis. We have developed a new method to synthesize substituted 4-dialkylaminopyridines through a one-pot reaction between amidines 4 and secondary amines, thus avoiding annoying multi-step reactions. Although two competitive routes were observed, the reaction pathways could be controlled with respect to prevailing 4-dialkylaminopyridine derivatives 6. Not least, the use of ethanol as a reaction medium combines high polarity, useful to the condensation process, with environmental compatibility.

4. Experimental

4.1. General

Melting points were determined using a Buchi 510 (capillary) or an Electrothermal 9100 apparatus and are uncorrected. IR spectra were measured using a Perkin–Elmer FTIR 16 P.C. (Nujol) spectrometer, and a Perkin–Elmer FTIR 'Spectrum One' (KBr, CHCl₃ spectroscopic grade) spectrometer coupled with an FTIR microscope 'Multiscope' Perkin–Elmer (Ba F_2 disc). ¹H and ¹³C NMR spectra were recorded either on a Varian Mercury 200 MHz, or a Bruker Avance 500 spectrometers in C_6D_6 solution, unless otherwise stated. Chemical shifts are expressed in parts per million from internal standard tetramethylsilane (δ) , coupling constants (J) are given in hertz. Mass spectroscopy data (MS) were obtained by electron impact ionization (EI) (70 eV) on ThermoQuest MD 800, or by electrospray ionization (ESI) on ThermoFinnigan 'LCQ Advantage'. Column chromatography was performed on Kieselgel 60 (Merck) 0.063–0.200 mm with eluants and ratios indicated in Section 4.

Materials. Enamines $2a^{23} 2b^{24} 2c^{25} 2d^{26} 2e^{27}$ and 4-hydroxy-3-nitro-2H-pyran-2-one[28](#page-10-0) have already been described. 4-Chloro-3-nitro-2H-pyran-2-one 1 is known compound,²⁹ but its analytical data have not been related.

4.1.1. 4-Chloro-3-nitro-2H-pyran-2-one 1. Phosphorus oxychloride (3.7 mL, 40 mmol) was mixed to absolute DMF (3.1 mL, 40 mmol) and chilled in an ice bath. With stirring, a solution of 4-hydroxy-3-nitro-2H-pyran-2-one (6.8 g, 40 mmol) in dry DMF (15 mL) was added dropwise. The mixture was stirred at 0° C for 15 min and for 3 h at room temperature before being poured onto ice. The goldyellow precipitate was filtered and recrystallized from AcOEt/cyclohexane (2:8) to give chloro derivative 1 (5.90 g, 78%) as yellow crystals, mp 111 °C; IR ν_{max} (Nujol) 1740 (C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 2.36 (3H, d, $J=0.9$ Hz, CH₃), 6.23 (1H, q, $J=0.9$ Hz, H-5); ¹³C NMR (CDCl₃) δ 20.5 (CH₃), 106.2 (CH-5), 134.4 (C–NO₂), 145.3 (C-4), 153.7 (C-6), 165.2 (C=O); (EI) m/z (% relative intensity): 191 (20) (M⁺+2), 189 (51) (M⁺), 145 (36), 130 (55) , 87 (48), 72 (18), 63 (29). Anal. Calcd for $C_6H_4CINO_4$: C, 38.02; H, 2.13; N, 7.39. Found: C, 37.93; H, 2.18; N, 7.46.

4.1.2. Synthesis of 6-methyl-4H-pyrano $[3,4-c][1,2,5]$ oxadiazol-4-one 3-oxide 3. With careful monitoring of internal temperature $(-40 °C)$ an equimolar amount of NaN₃ (0.39 g, 6 mmol) was added in one portion to a stirred solution of 4-chloro-3-nitro-2H-pyran-2-one $1(1.13 \text{ g}, 6 \text{ mmol})$ in dry DMF (5 mL). The mixture was kept at -40 °C until disappearance (EtOAc/cyclohexane, 7:3) of the chloro derivative 1. The stirring was continued until room temperature was reached. The reaction mixture was poured onto ice, then the precipitate was filtered, dried, and recrystallized from EtOH to afford pure furoxane derivative $3(0.62 \text{ g}, 61\%)$ as pale orange crystals, mp 146 °C (decomp.). IR ν_{max} (Nujol) 1765 (C=O), 1744, 1640, 1620 cm⁻¹; ¹H NMR (CDCl₃) δ 2.30 (3H, d, J=1.1 Hz, CH₃), 6.35 (1H, d, J=1.1 Hz, H-5); ¹³C NMR (CDCl₃) δ 20.3 (CH₃), 89.1 (C-3), 94.2 (CH-5), 150.7 (C-4), 151.0 (C-6), 161.9 (C=O); (EI) m/z (%

relative intensity): 168 [M⁺] (58), 138 [M⁺ $-N=$ O] (23), 108 [M⁺-N=O] (30), 66 (30), 52 (20), 43 (100). Anal. Calcd for $C_6H_4N_2O_4$: C, 42.87, H, 2.40; N, 16.66. Found: C, 42.76; H, 2.43; N, 16.54.

4.2. General procedure for the preparation of amidines 4a–e

To a solution of 4-chloro-3-nitro-2H-pyran-2-one 1 (1.89 g, 10 mmol) in dry DMF (10 mL) cooled at -40 °C an equimolar amount of NaN₃ (0.65 g, 10 mmol) was added in one portion. The resulting solution was stirred at -40 °C until disappearance of the chloro derivative 1 (about 4 h). After TLC monitoring (EtOAc/cyclohexane, 7:3), the suitable enamines 2a–e (10 mmol) dissolved in dry DMF (20 mL) was dropped in at -50 °C, checking strictly the inner temperature. Then stirring was continued at the same temperature for the reaction times indicated close to the corresponding derivatives 4a–e. The mixture was allowed to warm to -10 °C before being poured onto crushed ice. The brown precipitate was filtered, dried, and crystallized from AcOEt to give pure 4a. In the case of the amidines 4b–e the darkbrown oil was extracted with Et_2O (3×50 mL). The combined organic layers were washed with saturated aqueous NaCl (100 mL), then dried (Na_2SO_4) , and concentrated in vacuo to give a crude product, purified by silica gel column (EtOAc/cyclohexane, 7:3 to 1:1). The resulting solid residue was crystallized as indicated below to give pure 4b–e.

4.2.1. 6-Methyl-4- $\{[(1E)-1\text{-}morphism-4-y]$ -2-phenylethylidene]amino}-3-nitro-2H-pyran-2-one 4a. Reaction time: 1 h. Yield 72%; oxide yellow crystals from AcOEt, mp 158–159 °C; IR ν_{max} (Nujol) 1739 (C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 2.14 (3H, s, CH₃), 3.40–3.70 (8H, m, morpholine), 3.76 (2H, s, CH₂), 5.62 (1H, s, H-5), 7.11–7.18 and 7.29–7.38 (2+3H, 2m, ArH); ¹³C NMR (CDCl₃) δ 20.2 (CH₃), 37.9 (CH₂), 46.6 (CH₂NCH₂), 66.5 (CH₂OCH₂), 104.9 (CH-5), 120.5 (C–NO₂), 127.8, 128.2, 129.5 (ArCH), 133.8 (ArCqu), 157.0 (N=C–N), 157.8 (C-6), 159.9 (C-4), 163.0 (C=O). ESI-MS m/z (% relative intensity): 380 [M+23] (100), 358 [M+1] (50), 314 [M+1-44, $CO₂$] (100). Anal. Calcd for $C₁₈H₁₉N₃O₅$: C, 60.50; H, 5.36; N, 11.76. Found: C, 60.37; H, 5.34; N, 11.95.

4.2.2. (1E)-N,N-Diethyl-N'-(6-methyl-3-nitro-2-oxo-2Hpyran-4-yl)-2-phenylethanimidamide 4b. Reaction time: 1 h. Yield 27%; deep yellow powder from AcOEt/ i -Pr₂O, mp 140 °C; IR ν_{max} (Nujol) 1712 (C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 1.08 (3H, t, J=6.9 Hz, CH₃), 1.21 (3H, t, $J=6.9$ Hz, CH₃), 2.11 (3H, s, CH₃), 3.31 (2H, q, $J=6.9$ Hz, CH_2NCH_2), 3.50 (2H, q, $J=6.9$ Hz, CH_2NCH_2), 3.73 (2H, s, CH₂), 5.57 (1H, s, H-5), 7.11–7.16 and 7.24– 7.36 (2+3H, 2×m, ArH); ¹³C NMR (CDCl₃) δ 11.9 (CH₃), 14.0 (CH₃), 20.0 (CH₃ on C-6), 38.2 (CH₂), 43.8 and 43.9 (CH₂NCH₂), 105.4 (CH-5), 119.8 (C–NO₂), 127.6, 128.4, 129.3 (ArCH), 134.3 (ArCqu), 157.1 (N=C-N), 157.3 (C-6), 160.6 (C-4), 162.1 (C=O); ESI-MS m/z (% relative intensity): 366 [M+23] (80), 344 [M+1] (100), 300 [M+1-44, CO₂] (100). Anal. Calcd for C₁₈H₂₁N₃O₄: C, 62.96; H, 6.16; N, 12.24. Found: C, 62.83; H, 6.10; N, 12.31.

4.2.3. 6-Methyl-4-{[(1E)-1-morpholin-4-ylbutylidene] amino}-3-nitro-2H-pyran-2-one 4c. Reaction time: 1 h.

Yield 28% ; yellow powder from AcOEt/i-Pr₂O, mp 118 °C; IR ν_{max} (Nujol) 1724 (C=O) cm⁻¹; ¹H NMR $(CDCl_3)$ δ 0.96 (3H, t, J=7.3 Hz, CH_3CH_2), 1.46–1.64 $(2H, m, CH₃CH₂), 2.23$ (3H, s, CH₃ on C-6), 2.33 (2H, q, $J=7.7$ Hz, CH₂C $=$), 3.57–3.69 (4H, m, CH₂NCH₂), 3.73– 3.81 (4H, m, CH₂OCH₂), 5.69 (1H, s, H-5); ¹³C NMR (500 MHz) δ 12.7 (CH₃), 18.4 (CH₃ on C-6), 19.5 (CH₂), 31.4 (CH₂), 45.9 (CH₂NCH₂), 66.1 (CH₂OCH₂), 102.9 (CH-5), 121.5 (C–NO₂), 155.9 (N=C–N), 156.8 (C-6), 161.3 (C-4), 162.3 (C=O); ESI-MS m/z (% relative intensity): 332 [M+23] (75), 310 [M+1] (100), 266 [M+1-44, CO₂] (100). Anal. Calcd for C₁₄H₁₉N₃O₅: C, 54.36; H, 6.19; N, 13.58. Found: C, 54.15; H, 6.15; N, 13.67.

4.2.4. 6-Methyl-4-{[(1E)-3-methyl-1-morpholin-4-ylbutylidene]amino}-3-nitro-2H-pyran-2-one 4d. Reaction time: 1 h. Yield 50%; yellow powder from AcOEt, mp 165 °C; IR ν_{max} (Nujol) 1710 (C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (6H, d, J=6.6, 2×CH₃), 1.81 (1H, sept, $J=6.6$ Hz, CH₃–CH–CH₃), 2.16 (3H, s, CH₃), 2.18–2.22 (2H, m, CH2), 3.58–3.68 (4H, m, CH2NCH2), 3.70–3.79 $(4H, m, CH_2OCH_2), 5.67 (1H, s, H-5);$ ¹³C NMR (CDCl₃) δ 20.4 (CH₃ on C-6), 22.7 (2×CH₃), 27.6 (CH), 39.8 $(CH₂)$, 46.9 (CH₂NCH₂), 66.9 (CH₂OCH₂), 105.5 (CH-5), 119.0 (C–NO₂), 157.3 (N=C–N), 157.4 (C-6), 162.5 (C-4), 163.0 (C=O); ESI-MS m/z (% relative intensity): 346 $[M+23]$ (27), 324 $[M+1]$ (100), 280 $[M+1-44, CO₂]$ (100). Anal. Calcd for $C_{15}H_{21}N_3O_5$: C, 55.72; H, 6.55; N, 13.00. Found: C, 55.59; H, 6.44; N, 13.05.

4.2.5. 6-Methyl-4- $\{[(1E)-1-morpholin-4-y]-3-phenylpro$ pylidene]amino}-3-nitro-2H-pyran-2-one 4e. Reaction time: 2 h. Yield 25%; yellow powder from AcOEt/i-Pr₂O, mp 141 °C; IR ν_{max} (Nujol) 1715 (C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 2.12 (3H, s, CH₃), 2.40–3.00 (4 H, m, CH₂– CH₂), 3.45–3.60 (4H, m, CH₂NCH₂), 3.60–3.69 (4H, m, CH2OCH2), 5.12 (1H, s, H-5), 7.05–7.17 and 7.27–7.35 $(2+3H, 2m, ArH);$ ¹³C NMR (CDCl₃) δ 20.1 (CH₃), 33.0 (CH₂), 33.1 (CH₂), 46.6 (CH₂NCH₂), 66.5 (CH₂OCH₂), 104.6 (CH-5), 120.0 (C–NO₂), 127.1, 128.9, 129.0 $(ArCH)$, 139.0 $(ArCqu)$, 157.0 $(N=C-N)$, 157.8 $(C-6)$, 160.9 (C-4), 162.7 (C=O); ESI-MS m/z (% relative intensity): 394 [M+23] (48), 372 [M+1] (100), 328 [M+1-44, CO₂] (100). Anal. Calcd for C₁₉H₂₁N₃O₅: C, 61.45; H, 5.70; N, 11.31. Found: C, 61.28; H, 5.55; N, 11.40.

4.3. Reaction of the amidines 4a and 4c with N,N-diethylamine at reflux or method A: synthesis of compounds 5a and 6a

Amidine $4a$ (3 mmol) or $4c$ was suspended in N,N-diethylamine (15 mL). The reaction mixture was refluxed for 30 min. The amine excess was removed in vacuo and the crude residue chromatographed on a silica gel column, eluant EtOAc/cyclohexane (1:1). The thick oil obtained was crystallized from an appropriate solvent to give pure 5a or 6a, respectively.

4.3.1. 4-[4-Methyl-6-(nitromethyl)-3-phenylpyridin-2-yl]morpholine 5a. Yield 47%; yellow powder from AcOEt/petroleum ether, mp 92 °C; IR v_{max} (KBr) 1592 $(C=C)$, 1555 $(NO₂)$ and $(CHCl₃)$, 1591 $(C=C)$, 1555 $(NO₂) cm⁻¹;$ ¹H NMR δ 1.72 (3H, s, CH₃), 2.86–2.93 (4H,

m, CH₂NCH₂), 3.29–3.35 (4H, m, CH₂OCH₂), 4.91 (s, 2H, $CH₂NO₂$), 6.35 (1H, s, H-5), 6.93–7.09 (5H, m, ArH); ¹H NMR (CDCl₃) δ 2.13 (3H, s, CH₃), 2.97–3.03 (4H, m, $CH₂NCH₂$), 3.40–3.51 (4H, m, $CH₂OCH₂$), 5.51 (s, 2H, $CH₂NO₂$), 6.94 (1H, s, H-5), 7.20–7.49 (5H, m, ArH); ¹H NMR (DMSO- d_6) δ 2.05 (3H, s, CH₃), 2.80–2.85 (4H, m, $CH₂NCH₂$), 3.30–3.36 (4H, m, $CH₂OCH₂$), 5.70 (s, 2H, CH₂NO₂), 7.08 (1H, s, H-5), 7.29–7.52 (5H, m, ArH); ¹³C NMR (CDCl₃) δ 20.6 (CH₃), 49.4 (CH₂NCH₂), 66.7 (CH_2OCH_2) , 81.1 (CH₂NO₂), 119.5 (CH-5), 127.5, 128.8, 129.8 (ArCH), 137.4 (ArCqu), 145.7 (C-4), 148.1 (Cqu-CH₂NO₂), 160.1 (*Cqu*-morpholine); (EI) m/z (% relative intensity): 313 [M⁺] (10), 267 [M⁺ $-NO_2$] (100), 223 (26), 209 (28), 181 (16). Anal. Calcd for $C_{17}H_{19}N_3O_3$: C, 65.16; H, 6.11; N, 13.41. Found: C, 65.10; H, 6.15; N, 13.49.

4.3.2. N,N-Diethyl-2-(nitromethyl)-6-propylpyridin-4 amine 6a. Yield 67%; yellow needles from n-pentane, mp 112 °C; IR ν_{max} (Neat crystal): 1621 (C=N), 1582 (C=C) and (CHCl₃), 1622 (C=N), 1596 (C=C) cm⁻¹; ¹H NMR (500 MHz) δ 0.84 (6H, t, J=7.1 Hz, CH₃CH₂NCH₂CH₃), 1.05 (3H, t, $J=7.3$ Hz, $CH_3CH_2CH_2$), 1.92 (2H, sex, $J=7.3$ Hz, $CH_3CH_2CH_2$), 2.76 (2H, t, $J=7.3$ Hz, $CH_3CH_2CH_2$), 2.83 (4H, q, J=7.1 Hz, $CH_3CH_2NCH_2CH_3$), 5.16 (2H, s, CH₂NO₂), 6.22 (1H, d, J=2.2 Hz, H-5), 6.28 $(1H, d, J=2.2 Hz, H=3);$ ¹H NMR (500 MHz, CDCl₃) δ 1.02 (3H, t, J=7.4 Hz, CH₃CH₂CH₂), 1.24 (3H, t, $J=7.2$ Hz, $CH_3CH_2NCH_2CH_3$), 1.79 (2H, sex, $J=7.4$ Hz, $CH_3CH_2CH_2$), 2.66 (2H, t, J=7.4 Hz, $CH_3CH_2CH_2$), 3.43 (4H, q, J=7.2 Hz, CH₃CH₂NCH₂CH₃), 5.78 (1H, d, $J=2.4$ Hz, H-3), 6.09 (1H, d, $J=2.4$ Hz, H-5), 6.89 (1H, s, $=$ CHNO₂), 14.73 (1H, broad s, NH); ¹³C NMR (125.7 MHz) δ 11.2 (CH₃CH₂NCH₂CH₃), 13.1 (CH₃ propyl), 22.3 (CH₂ propyl), 40.0 (CH₂Py), 42.7 (CH₂NCH₂), 81.1 (CH2NO2), 103.5 (CH-3), 104.1 (CH-5), 149.6 (Cqu- $CH₂NO₂$), 152.4 (C-4), 162.2 (C-6); ¹³C NMR (125.7 MHz, CDCl₃) δ 11.6 (2×CH₃ amino group), 12.8 $(CH_3 \text{propyl})$, 20.8 (CH₂ propyl), 35.4 (CH₂Py), 44.1 (CH₂NCH₂), 93.8 (CH-3), 100.7 (CH-5), 104.5 (CH_2NCH_2) , 93.8 $(=CHNO₂), 146.7 (C=CHNO₂), 148.9 (C-6), 153.8 (C-$ 4); (EI) m/z (% relative intensity): 251 [M⁺] (11), 223 $[M⁺-28]$ (41), 205 $[M⁺-NO₂]$ (38), 190 (57), 177 (100), 162 (17). Anal. Calcd for C₁₃H₂₁N₃O₂: C, 62.13; H, 8.42; N, 16.72. Found: C, 62.00; H, 8.37; N, 16.58.

4.4. General procedure for the synthesis of pyridine derivatives 6a–l

Method B. Amidines 4c–e (4 mmol) suspended in ethanol (10 mL) with an equimolar amount of the appropriate amine in a sealed tube were put in a preheated oil bath at 70° C and heated for times indicated in [Table 1](#page-4-0). After disappearance (TLC monitoring) of the starting amidine the solvent was removed in vacuo and a small amount of the residue was dissolved in C_6D_6 and the ratio of pyridines **6a**,e–l was determined by ¹H NMR analysis (see [Table 1](#page-4-0)). Amidines 4c–e reacted with morpholine and gave a crude residue, which was crystallized from an appropriate solvent to afford pure pyrimidines 6e, 6g, and 6j. The crude reaction mixtures arising from amidines 4c–e reacted with diethylamine and piperidine were instead separated by column chromatography on a silica gel (EtOAc/cyclohexane, 1:9 to 9:1) giving the prevailing pyridines 6e–g, 6i,j, and 6l in pure form and the minor pyridine derivatives 6a, 6e, 6g,h and 6j,k, respectively.

Method C. Amidines 4d–e (4 mmol) suspended in ethanol (10 mL) with diethylamine (20 mmol) in a sealed tube were put in a preheated oil bath at 70° C and heated for the time periods indicated in [Table 1](#page-4-0). After disappearance (TLC monitoring) of the starting amidine the solvent was removed in vacuo and a small amount of the residue was dissolved in C_6D_6 and the ratio of pyridines 6g,h and 6j,k was determined by ¹H NMR analysis (see [Table 1\)](#page-4-0). The crude reaction mixtures were then separated by column chromatography on a silica gel (EtOAc/cyclohexane, 1:9 to 9:1) giving the prevailing pyridines 6h and 6k in pure form and the minor pyridine derivatives 6g and 6j, respectively.

The reaction times and isolated yields of the products 6a, and 6e–l are listed in [Table 1.](#page-4-0)

4.4.1. N,N-Diethyl-2-(nitromethyl)-6-propylpyridin-4-amine 6a. Analytical data were described earlier.

4.4.2. 4-[2-(Nitromethyl)-6-propylpyridin-4-yl]morpholine 6e. Yellow powder from *n*-pentane, mp 110 °C; IR ν_{max} (KBr) 1622 (C=N), 1596 (C=C) and (CHCl₃), 1622 (C=N), 1598 (C=C) cm⁻¹; ¹H NMR (500 MHz) δ 1.05 (3H, t, J=7.4 Hz, $CH_3CH_2CH_2$), 1.91 (2H, sex, J=7.4 and 7.5 Hz, CH₃CH₂CH₂), 2.64–2.68 (4H, m, CH₂NCH₂), 2.76 (2H, t, $J=7.5$ Hz, $CH_3CH_2CH_2$), 3.42–3.47 (4H, m, CH_2OCH_2), 5.21 (2H, s, CH_2NO_2), 6.23 (1H, d, J=2.2 Hz, H-5), 6.31 (1H, d, J=2.2 Hz, H-3); ¹³C NMR δ 13.8 (CH₃) propyl), 23.0 (CH₂ propyl), 40.6 (CH₂Py), 45.8 (CH₂NCH₂), 65.9 (CH₂OCH₂), 81.6 (CH₂NO₂), 106.2 (CH-3), 106.9 (CH-5), 150.3 (Cqu-CH₂NO₂), 156.4 (C-4), 163.1 (C-6); ESI-MS m/z (% relative intensity): 266 [M+1] (100), 220 [M+1-46, NO₂] (100). Anal. Calcd for C₁₃H₁₉N₃O₃: C, 58.85; H, 7.22; N, 15.84. Found: C, 58.77; H, 7.15; N, 15.90.

4.4.3. 2-(Nitromethyl)-4-piperidin-1-yl-6-proylpyridine 6f. Yellow crystals from AcOEt/i-Pr₂O, mp 125 °C; IR ν_{max} (KBr) 1622 (C=N), 1592 (C=C) cm⁻¹; ¹H NMR (500 MHz) δ 1.05 (3H, t, J=7.3 Hz, CH₃CH₂CH₂), 1.27– 1.34 (6H, m, $CH_2CH_2CH_2$), 1.90 (2H, sex, J=7.3 Hz, $CH_3CH_2CH_2$), 2.75 (2H, t, J=7.3 Hz, CH₃CH₂CH₂), 2.85– 2.90 (4H, m, CH₂NCH₂), 5.17 (2H, s, CH₂NO₂), 6.35 (1H, d, $J=2.2$ Hz, H-5), 6.39 (1H, d, $J=2.2$ Hz, H-3); ¹³C NMR (125.7 MHz) δ 13.8 (CH₃ propyl), 23.0 (CH₂ propyl), 24.1 and 24.9 (CH₂CH₂CH₂), 40.7 (CH₂Py), 46.9 (CH₂NCH₂), 81.7 (CH₂NO₂), 106.4 (CH-3), 107.0 (CH-5), 150.4 (Cqu- $CH₂NO₂$), 156.2 (C-4), 163.2 (C-6); ESI-MS m/z (% relative intensity): 264 [M+1] (100), 218 [M+1-46, NO₂] (100). Anal. Calcd for $C_{14}H_{21}N_3O_2$: C, 63.85; H, 8.04; N, 15.96. Found: C, 63.74; H, 8.00; N, 16.03.

4.4.4. 4-[2-Isobutyl-6-(nitromethyl)pyridin-4-yl]morpholine 6g. Yellow crystals from AcOEt/i-Pr₂O, mp 132 °C; IR ν_{max} (KBr) 1622 (C=N), 1595 (C=C) cm⁻¹; ¹H NMR δ 0.91 (6H, d, J=6.6 Hz, 2×CH₃), 2.22 (1H, sept, $J=6.6$ Hz, CH₃–CH–CH₃), 2.44–2.58 (4+2H, m, CH₂NCH₂ and CH₂), 3.20–3.30 (4H, m, CH₂OCH₂), 5.02 (2H, s, $CH₂NO₂$), 6.06 (1H, d, J=2.2 Hz, H-5), 6.11 (1H, d, J=2.2 Hz, H-3); ¹³C NMR (125.7 MHz) δ 22.4 (2×CH₃),

28.9 ($CH(CH_3)_{2}$), 45.8 (CH_2NCH_2), 47.8 (CH_2Py), 65.9 (CH_2OCH_2) , 81.6 (CH₂NO₂), 106.2 (CH-3), 107.6 (CH-5), 150.3 (Cqu-CH₂NO₂), 156.3 (C-4), 162.5 (C-6); ESI-MS m/z (% relative intensity): 280 [M+1] (100), 234 [M+1-46, NO₂] (100). Anal. Calcd for $C_{14}H_{21}N_3O_3$: C, 60.20; H, 7.58; N, 15.04. Found: C, 60.12; H, 7.65; N, 14.92.

4.4.5. N,N-Diethyl-2-isobutyl-6-(nitromethyl)pyridin-4 amine 6h. Pale yellow crystals from AcOEt/petroleum ether, mp 117 °C; IR v_{max} (KBr) 1624 (C=N), 1594 $(C=C)$ cm⁻¹; ¹H NMR (500 MHz) δ 0.83 (6H, t, $J=7.1$ Hz, $CH_3CH_2NCH_2CH_3$), 1.06 (6H, d, $J=6.6$ Hz, $2 \times CH_3$), 2.39 (1H, sept, J=6.6 Hz, CH₃–CH–CH₃), 2.67 (2H, d, J=7.2 Hz, CH_2 –CH(CH₃)₂), 2.83 (4H, q, $J=7.1$ Hz, $CH₂NCH₂$), 5.15 (2H, s, $CH₂NO₂$), 6.22 (1H, d, $J=2.3$ Hz, H-5), 6.28 (1H, d, $J=2.3$ Hz, H-3); ¹³C NMR (125.7 MHz) δ 11.6 (CH₃CH₂NCH₂CH₃), 22.5 (2×CH₃), 28.8 (CH (CH₃)₂), 43.5 (CH₂ NCH₂), 47.5 (CH₂Py), 81.8 (CH2NO2), 104.2 (CH-3), 105.6 (CH-5), 150.3 (Cqu-CH2NO2), 153.0 (C-4), 162.2 (C-6); ESI-MS m/z (% relative intensity): 266 [M+1] (100), 220 [M+1-46, NO₂] (100). Anal. Calcd for $C_{14}H_{23}N_3O_2$: C, 63.37; H, 8.74; N, 15.84. Found: C, 63.20; H, 8.90; N, 15.98.

4.4.6. 2-Isobutyl-6-(nitromethyl)-4-piperidin-1-ylpyridine 6i. Pale orange crystals from AcOEt/cyclohexane, mp 133 °C; IR ν_{max} (Nujol) 1621 (C=N), 1590 (C=C) cm⁻¹; ¹H NMR (500 MHz) δ 1.06 (6H, d, J=6.7 Hz, $2 \times CH_3$), 1.11–1.30 (6H, m, CH₂CH₂CH₂), 2.35 (1H, sept, $J=6.7$ Hz, CH₃–CH–CH₃), 2.58–2.70 (2H, m, CH₂), 2.80– 2.95 (4H, m, CH₂NCH₂), 5.19 (2H, s, CH₂NO₂), 6.36 (1H, d, J=2.3 Hz, H-5), 6.40 (1H, d, J=2.3 Hz, H-3); ¹³C NMR (125.7 MHz) δ 22.5 (2×CH₃), 24.1 and 25.0 (CH₂CH₂CH₂), 29.0 (CH (CH₃)₂), 47.0 (CH₂NCH₂), 47.9 (CH₂Py), 81.7 $(CH₂NO₂)$, 106.5 (CH-3), 107.8 (CH-5), 150.4 (Cqu-CH2NO2), 156.2 (C-4), 162.5 (C-6); ESI-MS m/z (% relative intensity): 278 [M+1] (100), 232 [M+1-46, NO₂] (100). Anal. Calcd for $C_{15}H_{23}N_{3}O_{2}$: C, 64.96; H, 8.36; N, 15.15. Found: C, 64.90; H, 8.27; N, 15.23.

4.4.7. 4-[2-(Nitromethyl)-6-(2-phenylethyl)pyridin-4-yl] **morpholine 6j.** Yellow crystals from AcOEt/ i -Pr₂O, mp 123 °C; IR ν_{max} (KBr) 1623 (C=N), 1595 (C=C) cm⁻¹;
¹H NMR (500 MHz) δ 2.55–2.60 (4H m, CH-NCH₂) 3.07 ¹H NMR (500 MHz) δ 2.55–2.60 (4H, m, CH₂NCH₂), 3.07 (2H, t, $J=7.7$ Hz, CH_2Py), 3.21 (2H, t, $J=7.7$ Hz, $CH_2C_6H_5$), 3.38–3.41 (4H, m, CH_2OCH_2), 5.20 (2H, s, CH₂NO₂), 6.08 (1H, d, J=2.2 Hz, H-5), 6.25 (1H, d, J=2.2 Hz, H-3), 7.22–7.28 (5H, m, ArH); ¹³C NMR (125.7 MHz) δ 35.7 (CH₂C₆H₅), 40.5 (CH₂Py), 45.8 (CH_2NCH_2) , 65.9 (CH₂OCH₂), 81.6 (CH₂NO₂), 106.3 (CH-3), 107.3 (CH-5), 126.0 (ArCH), 141.9 (ArCqu), 150.4 (Cqu-CH₂NO₂), 156.3 (C-4), 162.1 (C-6); ESI-MS m/z (% relative intensity): 328 [M+1] (100), 282 [M+1-46, NO₂] (100). Anal. Calcd for C₁₈H₂₁N₃O₃: C, 66.04; H, 6.47; N, 12.84. Found: C, 66.00; H, 6.37; N, 12.71.

4.4.8. N,N-Diethyl-2-(nitromethyl)-6-(2-phenylethyl)pyridin-4-amine 6k. Yellow amorphous powder from i -Pr₂O, mp 85 °C, dec; IR ν_{max} (KBr) 1625 (C=N), 1593 (C=C) cm⁻¹; ¹H NMR δ 0.62 (6H, t, J=7.0 Hz, CH₃CH₂ NCH₂CH₃), 2.60 (4H, q, J=7.0 Hz, CH₂NCH₂), 2.85–2.95 $(2H, m, CH₂Py), 3.02-3.067$ $(2H, m, CH₂C₆H₅), 5.00$ $(2H,$ s, CH₂NO₂), 5.90 (1H, d, J=2.2 Hz, H-5), 6.09 (1H, d, $J=2.2$ Hz, H-3), 7.00–7.11 (5H, m, ArH); ¹³C NMR (125.7 MHz) δ 12.0 $(CH_3CH_2NCH_2CH_3)$, 35.8 $(CH_2$ C_6H_5), 40.5 (CH₂Py), 43.5 (CH₂NCH₂), 81.8 (CH₂NO₂), 104.5 (CH-3), 105.4 (CH-5), 125.9, 128.2, 128.8 (ArCH), 142.17 (ArCqu), 150.3 (Cqu-CH₂NO₂), 153.2 (C-4), 161.8 (C-6); ESI-MS m/z (% relative intensity): 314 [M+1] (100), 268 [M+1-46, NO2] (100). Anal. Calcd for $C_{18}H_{23}N_3O_2$: C, 68.98; H, 7.40; N, 13.41. Found: C, 70.14; H, 7.48; N, 13.29.

4.4.9. 2-(Nitromethyl)-6-(2-phenylethyl)-4-piperidin-1 ylpyridine 6l. Yellow crystals from AcOEt/cyclohexane, mp 118 °C; IR ν_{max} (KBr) 1619 (C=N), 1591 (C=C) cm⁻¹; ¹H NMR δ 1.00-1.09 (6H, m, CH₂ CH₂CH₂), 2.59-2.73 (4H, m, CH₂NCH₂), 2.86–2.95 (2H, m, CH₂Py), 3.02–3.10 (2H, m, $CH_2C_6H_5$), 5.01 (2H, s, CH_2NO_2), 6.06 $(1H, d, J=2.0 Hz, H=5)$, 6.21 $(1H, d, J=2.0 Hz, H=3)$, 7.02-7.07 (5H, m, ArH); ¹³C NMR (125.7 MHz) δ 23.4 and 24.2 (CH₂CH₂CH₂), 35.1 (CH₂C₆H₅), 39.8 (CH₂Py), 46.1 (CH₂NCH₂), 80.1 (CH₂NO₂), 105.8 (CH-3), 106.7 (CH-5), 125.1, 127.7, 128.0 (ArCH), 141.4 (ArCqu), 149.7 $(Cqu-CH_2NO_2)$, 155.4 (C-4), 161.3 (C-6); ESI-MS m/z (%) relative intensity): 326 [M+1] (100), 280 [M+1–46, NO₂] (100). Anal. Calcd for $C_{19}H_{23}N_3O_2$: C, 70.13; H, 7.12; N, 12.91. Found: C, 70.03; H, 7.16; N, 13.07.

Method D. A catalytic (0.03 g) amount of p-TSA was added to suspension of amidines 4a,b (5 mmol) in ethanol solution (12 mL) with an equimolar amount of the appropriate amine. The mixture in a sealed tube was put in a preheated oil bath at 70 \degree C and heated for the time periods indicated in [Table 1.](#page-4-0) After disappearance (TLC monitoring) of the starting amidine the solvent was removed in vacuo. The crude residue was quenched with water and extracted with dichloromethane $(3\times50 \text{ mL})$. The combined organic layers were washed with $H₂O$ (100 mL), dried with $Na₂SO₄$, and then evaporated in vacuo. A small amount of the residue was dissolved in C_6D_6 and the ratio of pyridines $5a$,b and $6b-d$ was determined by ¹H NMR analysis (see [Table 1\)](#page-4-0). The crude mixtures containing 5a,b and 6b–d were separated by column chromatography on silica gel (EtOAc/cyclohexane, 1:9 to 9:1) affording first 4-methylpyridines 5 and then 4-dialkylaminopyridines 6. The reaction times and isolated yields of the compounds are presented in [Table 1.](#page-4-0)

4.4.10. 4-[4-Methyl-6-(nitromethyl)-3-phenylpyridin-2 yl]morpholine 5a. Analytical data were described earlier.

4.4.11. N,N-Diethyl-4-methyl-6-(nitromethyl)-3-phenylpyridin-2-amine 5b. Thick yellow oil; IR v_{max} (Nujol) 1585 (C=C), 1556 (NO₂) cm⁻¹; ¹H NMR δ 0.75 (3H, t, $J=7.3$ Hz, $2\times$ CH₃), 1.68 (3H, s, CH₃), 2.93 (4H, q, $J=7.3$ Hz, $2\times$ CH₂), 4.88 (s, 2H, CH₂NO₂), 6.25 (1H, s, H-5), 6.92–7.08 (5H, m, ArH); ¹H NMR (CDCl₃) δ 0.82 (3H, t, $J=6.9$ Hz, $2 \times CH_3$), 2.03 (3H, s, CH₃), 3.04 (4H, q, $J=6.9$ Hz, $2\times$ CH₂), 5.49 (s, 2H, CH₂NO₂), 6.80 (1H, s, H-5), 7.20–7.48 (5H, m, ArH); ¹³C NMR (CDCl₃) δ 13.2 $(2 \times CH_3)$, 21.0 (CH₃ on C-4), 45.2 (CH₂NCH₂), 81.7 (CH2NO2), 117.8 (CH-5), 127.3, 128.9, 130.2 (ArCH), 138.9 (ArCqu), 145.7 (C-4), 148.1 (Cqu-CH₂NO₂), 160.2

(Cqu-diethylamine); ESI-MS m/z (% relative intensity): 300 [M+1] (100), 254 [M+1–46, NO₂] (100). Anal. Calcd for $C_{17}H_{21}N_3O_2$: C, 68.21; H, 7.07; N, 14.04. Found: C, 68.38; H, 7.16; N, 13.91.

4.4.12. 4-[2-Benzyl-6-(nitromethyl)pyridin-4-yl]morpholine 6b. Yellow crystals from AcOEt/i-Pr₂O, mp 120 °C; IR ν_{max} (KBr) 1629 (C=N), 1592 (C=C) and (CHCl₃), 1624 (C=N), 1600 (C=C) cm⁻¹; ¹H NMR δ 2.32-2.39 (4H, m, $CH₂NCH₂$), 3.12–3.19 (4H, m, CH₂OCH₂), 3.98 (s, 2H, $CH_2C_6H_5$, 4.98 (s, 2H, CH₂NO₂), 6.07 (2H, s, H-3 and H-5), 7.02–7.23 (5H, m, ArH); ¹³C NMR (125.7 MHz) δ 44.9 $(CH_2-C_6H_5)$, 45.6 (CH₂NCH₂), 65.8 (CH₂OCH₂), 81.4 $(CH₂NO₂)$, 106.2 (CH-3), 107.1 (CH-5), 126.4, 129.6, 129.2 (Ar-CH), 139.9 (ArCqu), 150.3 (Cqu-CH₂NO₂), 156.6 (C-4), 162.1 (C-6); ESI-MS m/z (% relative intensity): 314 [M+1] (100), 268 [M+1-46, NO2] (100). Anal. Calcd for $C_{17}H_{19}N_3O_3$: C, 65.16; H, 6.11; N, 13.41. Found: C, 65.07; H, 6.08; N, 13.46.

4.4.13. 2-Benzyl-N,N-diethyl-6-(nitromethyl)pyridin-**4-amine 6c.** Pale yellow crystals from AcOEt/ i -Pr₂O, mp 123 °C; IR ν_{max} (Nujol) 1623 (C=N), 1590 (C=C) cm⁻¹;
¹H NMR δ 0.61 (3H + 1–6.9 Hz 2×CH)) 2.58 (4H g ¹H NMR δ 0.61 (3H, t, J=6.9 Hz, 2×CH₃), 2.58 (4H, q, $J=6.9$ Hz, $2\times$ CH₂), 4.00 (s, 2H, CH₂C₆H₅), 4.98 (s, 2H, CH₂NO₂), 6.04 (1H, d, J=2.2 Hz, H-5), 6.10 (1H, d, J=2.2 Hz, H-3), 7.00-7.27 (5H, m, ArH); ¹³C NMR δ 12.2 $(2 \times CH_3)$, 43.8 (CH₂NCH₂), 45.3 (CH₂C₆H₅), 82.1 (CH2NO2), 104.8 (CH-3), 105.6 (CH-5), 126.6, 128.8, 129.6 (ArCH), 140.6 (ArCqu), 150.7 (Cqu -CH₂NO₂), 153.6 (C-4), 162.2 (C-6); (EI) m/z (% relative intensity): 299 [M+] (26), 253 [M⁺ -NO2] (100), 238 (53), 209 (25). Anal. Calcd for $C_{17}H_{21}N_3O_2$: C, 68.21; H, 7.07; N, 14.04. Found: C, 68.12; H, 7.00; N, 14.11.

4.4.14. 2-Benzyl-6-(nitromethyl)-4-piperidin-1-ylpyridine 6d. Pale orange crystals from AcOEt/ i -Pr₂O, mp 120 °C; IR ν_{max} (KBr) 1623 (C=N), 1590 (C=C) cm⁻¹;
¹H NMR δ 0.90-1.10 (6H m CH-CH-CH-), 2.53-2.62 ¹H NMR δ 0.90–1.10 (6H, m, CH₂CH₂CH₂), 2.53–2.62 (4H, m, CH₂NCH₂), 3.98 (s, 2H, CH₂C₆H₅), 4.99 (s, 2H, CH2NO2), 6.20 (2H, s, H-3 and H-5), 6.95–7.25 (5H, m, ArH); ¹³C NMR δ 24.1 and 24.9 (CH₂CH₂CH₂), 44.9 $(CH_2C_6H_5)$, 46.8 (CH₂NCH₂), 81.5 (CH₂NO₂), 106.8 (CH-3), 107.4 (CH-5), 126.4, 128.6, 129.3 (ArCH), 140.2 $(ArCqu)$, 150.4 $(Cqu$ -CH₂NO₂), 156.4 $(C-4)$, 162.1 $(C-6)$; ESI-MS m/z (% relative intensity): 312 [M+1] (100), 266 [M+1-46, NO₂] (100). Anal. Calcd for $C_{18}H_{21}N_3O_2$: C, 69.43; H, 6.80; N, 13.49. Found: C, 69.36; H, 6.76; N, 13.38.

Acknowledgements

Financial support by Ministero dell'Istruzione e della Ricerca Universitaria (MIUR) and Università degli Studi di Milano (FIRST) is gratefully acknowledged.

References and notes

1. Murugan, R.; Scriven, E. F. V. Aldrichimica Acta 2003, 36, 21–27.

- 2. (a) Kotsuki, H.; Sakai, H.; Shinohara, T. Synlett 2000, 116–118; (b) Vorbrüggen, H. Adv. Heterocycl. Chem. 1990, 49, 118-119 and references cited therein.
- 3. Bartoli, G.; Bosco, M.; Cimarelli, C.; Dal Pozzo, R.; De Munno, G.; Guercio, G.; Palmieri, G. J. Org. Chem. 1992, 57, 6020–6025.
- 4. Schleimer, R.; Würthwein, E.-U. Chem. Ber. 1994, 127, 1437– 1440.
- 5. Beccalli, E. M.; Contini, A.; Trimarco, P. Tetrahedron 2002, 58, 1213–1221.
- 6. Ellis, G. P. Comprehensive Heterocyclic Chemistry; Boulton, A. J., Mc Killop, A., Eds.; Pergamon: Oxford, 1984; Vol. 3, p 681 and references cited therein.
- 7. Ram, V. J.; Srivastava, P.; Safena, A. S. J. Org. Chem. 2001, 66, 5333–5337.
- 8. Boyd, G. V. The Chemistry of Amidines and Imidate; Patai, S., Rappoport, Z., Eds.; Interscience: London, 1991; Vol. 2, pp 390–395.
- 9. Beccalli, E. M.; Contini, A.; Trimarco, P. Tetrahedron 2005, 61, 4957–4964.
- 10. Söderberg, B. C. Curr. Org. Chem. 2000, 4, 727-764.
- 11. Dyall, K. L. Org. Mass Spectrom. 1989, 24, 465–469.
- 12. Kadaba, P. K.; Stanovnik, B.; Tisler, M. Adv. Heterocycl. Chem. 1984, 37, 339 and references cited therein.
- 13. (a) Pelter, T.; Ayoub, M. J. Chem. Soc., Perkin Trans. 1 1981, 1173–1179; (b) Cyr, T. D.; Poulton, A. G. Can. J. Chem. 1982, 60, 133–137; (c) Cervello, J.; Marquet, J.; Moreno-Mañas, M. Tetrahedron 1990, 46, 2035-2046 and references cited therein.
- 14. (a) Johnson, C. D. Comprehensive Heterocyclic Chemistry; Boulton, A. J., Mc Killop, A., Eds.; Pergamon: Oxford, 1984; Vol. 2, pp 117–124 and reference cited therein; (b) Atlas of Spectral Data and Physical Constants for Organic Compounds; Grasselli, J. G., Ritchey, W. M., Eds.; 2nd ed., CRC: Cleveland, 1975; Vol. 4, pp 373–408; (c) Pourchert, C. J.; Behnke, J. The Aldrich Library of ${}^{13}C$ and ¹H FT-NMR Spectra, 1st ed.; Aldrich Chemical: Milwaukee, MI, 1993; (d) Pretsch, E.; Seibl, J.; Clerc, T.; Simon, W. Tables of Spectral Data for Structure Determination of Organic Compounds, 2nd ed.; Springer: New York, NY, 1989.
- 15. (a) More O'Ferral, R. A.; Murray, B. A. J. Chem. Soc., Perkin Trans. 2 1994, 2461–2470; (b) Carey, A. R. E.; More O'Ferral, R. A.; Murphy, G. M.; Murray, B. A. J. Chem. Soc., Perkin Trans. 2 1994, 2471–2479; (c) Kolehmainen, E.; Osmia1owski, B.; Nissinen, M.; Kauppinen, M.; Gawinecki, R. J. Chem. Soc., Perkin Trans. 2 2000, 2185–2191; (d) Unver, H.; Polat, K.; Uçar, M.; Zengin, D. M. Spectrosc. Lett. 2003, 36, 287–301.
- 16. Feuer, H.; Lawrence, J. P. J. Org. Chem. 1972, 37, 3662–3670.
- 17. Kolehmainen, E.; Osmia1owski, B.; Krygowski, M. T.; Kauppinen, R.; Nissinen, M.; Gawinecki, R. J. Chem. Soc., Perkin Trans. 2 2000, 1259–1266.
- 18. (a) Buurman, D. J.; van Veldhuizen, A.; van der Plas, H. C. J. Org. Chem. 1990, 55, 778–780; (b) Hutchinson, I. S.; Matlin, S. A.; Mete, A. Tetrahedron Lett. 2001, 1773–1776.
- 19. Coustard, J. M.; Soro, Y.; Siaka, S.; Bamba, F.; Cousson, A. Tetrahedron 2006, 3320–3328.
- 20. Rasala, D. Bull. Soc. Chim. Fr. 1992, 129, 79–84.
- 21. Reichardt, C. Angew. Chem., Int. Ed. Engl. 1979, 18, 98– 110.
- 22. (a) Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovicz, J.; Terrel, R. J. Am. Chem. Soc. 1963, 85, 207–222; (b)

Gurowitz, W. D.; Joseph, M. A. Tetrahedron Lett. 1965, 4433– 4439.

- 23. Broekhof, N. L. J. M.; Jonkers, F. L.; van der Gen, A. Tetrahedron Lett. 1979, 2433–2436.
- 24. Mannich, C.; Davidsen, H. Chem. Ber. 1936, 69, 2106–2122.
- 25. May, G.; Pinhey, L. J. Aust. J. Chem. 1982, 35, 1859–1871.
- 26. Knorr, R.; Loew, P.; Hassel, P. Synthesis 1983, 785–786.
- 27. Fisher, G. B.; Lee, L.; Klettke, F. W. Synth. Commun. 1994, 24, 1541–1546.
- 28. Arndt, F.; Avan, S. Chem. Ber. 1951, 84, 343–348.
- 29. Akhtar, N.; Munawar, M. A.; Siddiq, M. Indian J. Chem., Sect. B 1986, 25, 328.